
#1. Basic ASM concepts - Mikelan98

What is ASM?

A program (games are programs, of course) can be roughly divided in two parts: code and

resources. In a NDS ROM, code files are the arm9.bin, arm7.bin and the overlay files, while

other files are resources.

However, the program code (C in this case) does not show as Game Freak wrote it but

compiled. Compilation results in a degeneracy of the code into processor instructions, where

all the function names are lost, or variables and structs don’t exist anymore and are converted

in registers and pointers. That is what we call ASM.

However, most of the code can be identified easily by the other pieces of code they call. In this

regard, these fragments of code are called functions in a source code and subroutines in ASM,

but they are equivalent: they can receive data (arguments), process it and return an output. Of

course, like functions, there are subroutines that may not have neither input nor output.

Except when the function uses the inline keyword, every function call in a source will be

translated as a BL, BX or BLX in ASM. That’s the most important thing for identifying code’s

purpose or writing new ASM code, as long as we know what does the called subroutine.

(Note that, in the image above, function1() is an inline function and it is not branched to by the

code, but directly compiled inside the invoking function)

#1. Basic ASM concepts - Mikelan98

The main difficulty here is to find the subroutines original names, as they are lost at

compilation. The only way to have them would be having the original source code, or

supposing them by analogy with a similar source code.

What are the code files?

The original source code ends compiled in 16-bit instructions (for these parts of the program

that are compiled in THUMB mode) and 32-bit instructions (for ARM mode). This means 2

bytes and 4 bytes, respectively, for each instruction to be processed. Each different instruction

will have a different 16-bit or 32-bit value (for example, NOP instruction is always C0 46 in

THUMB mode, little endian). The code files in the ROM (arm9.bin and overlays are the most

important ones) are in fact a bunch of 16-bit and 32-bit instructions, forming large byte

sequences for each function/subroutine.

These byte sequences that form subroutines can be modified, but never expanded beyond its

original size. That is because every subroutine coded in the code files interacts with other

subroutines with both relative jumps/branches and absolute addresses. Editing every

subroutine in the code files for fixing every branch is unapproachable, so the only way to write

new subroutines is to find free space in the original code files, or finding a method for loading

our data in a free RAM address.

In the code files we can also find predefined arrays that subroutines can use. These predefined

arrays are also known as tables in the ROM hacking scene (for example, the type effectiveness

table, the overworld table or the map headers).

The RAM memory

When the program (the game) starts, the very first thing that happens is the dump of the

arm9.bin contents (in any case decompressed, even if the file is normally compressed in the

ROM) in address 0x02000000 of the RAM memory. The processor can’t read nor store data in

other place than the RAM memory, that’s why the code file contents need to be dumped in

the RAM, so the processor can read and execute their instructions. It’s also the reason of the

code instructions to refer other subroutines of the program by its position in the RAM memory

and not by its position in the code files.

However, every compiled instruction of the program would take a lot of RAM memory if they

were loaded at the same time. That’s why overlayed code files exist. The overlays are different

files with different purposes in the program, but they are not always loaded in the RAM, but

only when they are needed. In our case, the most significant cases are the overworld overlay

set (some overlays that manage code that is only expected to run in the overworld) and the

battle overlay set (overlays only expected to appear when the game is in a battle). That avoids

a huge waste of memory, so more resources (images, data, 3D models) can be stored in the

RAM.

Registers

The processor registers are the “variables” that can be operated in ASM, due to the inexistence

of real variables in assembly. In both GBA and NDS they always have a 32-bit size (4 bytes). In

Thumb mode (the instruction set that we are going to use in 99.999% of the cases) we only

have 8 common registers (from R0 to R7) and 3 special registers. Instructions always refer to a

specific operation with determined register/s. The common registers are used for common

arithmetic/logical operations or RAM memory access. However, special registers have specific

roles and should not be used for other purposes. These are:

#1. Basic ASM concepts - Mikelan98

SP – Stack pointer: This register stores the current pointer of the stack in the RAM memory.

We will cover the stack later, but we can define it as the memory region where unused register

values are stored until they are loaded into a register and then operated. It is very important,

because we couldn’t do everything we want with only 8 registers for the whole program.

LR – Link register: This register is important when calling a subroutine (using BL or BLX),

because it stores the pointer to the location where the program was before accessing that

subroutine. In other words, it stores the pointer to where the program must return after

calling a function. At the end of a subroutine, this register’s value somehow must end in PC

register.

PC – Program counter: This register stores the RAM address of the next instruction that will be

executed by the processor.

Instructions

The most important instructions of THUMB mode are the following ones.

INSTR PURPOSE USAGE

NOP Nothing (commonly used as a placeholder) NOP

LSL Logical shift of RB, value/RC bits to the left. Store result in RA
This is equivalent of multiplying RB by 2value or 2RC

LSL RA, RB, value
LSL RA, RB, RC

LSR Logical shift of RB, value/RC bits to the right. Store result in RA
This is equivalent of dividing RB by 2value or 2RC

LSR RA, RB, value
LSR RA, RB, RC

ADD Sum RB and RC, store result in RA
Sum value to RA

ADD RA, RB, RC
ADD RA, value

SUB Subtract RC to RB, store result in RA
Subtract value to RA

ADD RA, RB, RC
ADD RA, value

MUL Multiply RB to RA, store result in RA MUL RA, RB

AND Makes a bitwise and between RB and RC, store result in RA AND RA, RB, RC

ORR Makes a bitwise or between RB and RC, store result in RA ORR RA, RB, RC

EOR Makes a bitwise xor between RB and RC, store result in RA EOR RA, RB, RC

MOV Loads value in RA
Loads RB in RA

MOV RA, value
MOV RA, RB

LDR Loads 4 bytes from memory address [RB + value] in RA LDR RA, [RB, value]

LDRH Loads 2 bytes from memory address [RB + value] in RA LDRH RA, [RB, value]

LDRB Loads 1 byte from memory address [RB + value] in RA LDRB RA, [RB, value]

STR Stores 4 bytes of RA in memory address [RB + value] STR RA, [RB, value]

STRH Stores 2 bytes of RA in memory address [RB + value] STRH RA, [RB, value]

STRB Stores 1 byte of RA in memory address [RB + value] STRB RA, [RB, value]

CMP Compare RA and RB, updates internal CPU flags CMP RA, RB

B Execution jumps to address B address

BEQ Execution jumps to address if RA = RB after a CMP BEQ address

BNE Execution jumps to address if RA ≠ RB after a CMP BNE address

BCS Execution jumps to address if RA >= RB after a CMP BCS address

BCC Execution jumps to address if RA < RB after a CMP BCC address

BL Saves the current PC value in LR, then jumps to address BL address

BX Execution jumps to RA BX RA

BLX Same as BL, but changes the instruction set (from ARM to
THUMB mode or from THUMB to ARM mode)

BLX address
BLX RA

PUSH Saves specified registers in the stack PUSH {RA-RB}

PUSH Loads specified registers from the stack POP {RA-RB}

#1. Basic ASM concepts - Mikelan98

Logical and arithmetical instructions

These instructions operate with the current values in registers. Each instruction has a specific

purpose and may come from different C source operations. As the table shows, the first

register (RA) is the only one that gets updated, while the others remain with the same value.

It is important to explain how the LSR and LSL instructions work. Both are logical shifts, so the

bits of a register move to right or left as many places as specified in the instruction. This means

that, for each position that the bits are moved to, the register’s value gets multiplied or

divided by 2.

The bits that overflow the 32-bit register size at the left (in a LSL) or at the right (in a LSR) are

lost, so the information that these bits had cannot be recovered and are always filled with

zeros.

Loading and writing instructions

These instructions can access to the RAM memory, load information from there and store it in

registers so the processor can operate them. They can also write registers’ values to the RAM

memory (after processing them, for example).

MOV is the assignation instruction, as it can directly load a value from 0 to 255 in a register. It

can also copy a register’s value to another register. However, MOV cannot be used for loading

a value higher than 256 in a register.

LDR and STR instructions can work with words (32-bit values), halfwords (16-bit values) or

bytes (8-bit values), these last two with the LDRH/STRH and LDRB/STRB instructions. They

need a RAM address, stored in the register they use, to work. Along with that register, they

can also have a specified value that increase that address.

LDR has also a special purpose in most of subroutines. Remember that MOV could not load

values higher than 255 in a register? LDR allows using PC as register, so it can load 32-bit

values (4 bytes) near the current subroutine (the distance between the LDR instruction and the

4 loaded bytes are defined by the “increasing” value we mentioned). These data bytes are

usually stored at the end of a subroutine and before the next subroutine starts. In this case,

the LDR instruction is common to be represented as LDR RA, =value.

Branching instructions

They allow the code to branch to different parts of the subroutine, or even call other

subroutines.

There are different conditions for B instruction (as they can be seen in the table), all of them

perform short jumps and usually inside the same subroutine. They need a CMP instruction for

#1. Basic ASM concepts - Mikelan98

checking the condition between two register values. These instructions come from If, For and

While structures in the C source.

We also have BL and BLX instruction, probably the most important ones. They perform big

jumps (from the arm9 region to an overlay region, for example). They are also an exception of

the THUMB mode, as they are the only instructions that are 32-bit long (unlike the other ones

that are 16-bit long). As we explained in the introduction of this document, every BL and BLX

instruction comes from a function call in the C source. In fact, we must keep seeing it like

subroutine call instructions.

BLX also allows to switch between ARM and THUMB modes. It always changes the processor to

THUMB mode if it was in ARM mode, or to ARM mode if it was in THUMB mode. Usually,

everything in the program is compiled/encoded in THUMB mode except library subroutines

(fixed- and floating-point functions, divmod functions, vector operation functions…) because

they need a more powerful instruction set, so we will commonly see a BLX when a library

function is called in the program.

BX (and BLX when uses a register instead of an offset) can also perform a instruction set switch

depending on the last bit (the less significant one) of the specified register. When it is zero, it

changes to (or keeps in) ARM mode, and when it is 1 it changes to (or keeps in) THUMB mode.

In other words, when a BX RA or BLX RA is executed, it will change to ARM mode if RA = offset,

and it will change to THUMB mode if RA = offset + 1.

Stack instructions

We will first explain what the stack is. The stack can be defined as a 32-bit integers dynamic

array that starts around RAM memory offset 0x027E0000 and is dynamically expanded to

consecutive lower offsets. Note that this array elements have the same size as the registers:

that is because this array is used for storing register values (when they are not going to be

used in the current subroutine, or when there’s not enough usable registers and some values

have to be stored somewhere). The current pointer to the last element of the stack is stored in

the SP register.

PUSH instruction stores the specified register values in the stack, while POP instruction loads

back the values to registers. Both instructions modify the SP register value, as they add and

delete elements from the array.

#1. Basic ASM concepts - Mikelan98

Keeping the SP register updated allows PUSH and POP instructions to know where they must

operate in the RAM memory. Obviously, the SP register value is always a multiple of 4, because

the elements are 4 bytes length.

A common usage of stack instructions happens when a BL instruction is executed: usually the

first instruction of a called subroutine is a PUSH instruction that stores the LR (along with other

registers). At the end of the subroutine, a POP is performed with the PC register (along with

the other registers specified previously). This means that the LR value is stored in the stack,

and later it ends in the PC register, so the program execution automatically jumps to the

original LR value (that is, the instruction that was just after the BL).

Compilation fingerprints

There exist a lot of different compilation directives that convert the C source code to ASM

code in quite different ways, with more or less optimization. In our case (in NDS games and in

THUMB mode) we will find that a lot of C code structures have a specific ways to be converted

in ARM instructions, allowing us to establish relationships between low-level programming

language functions and assembly language subroutines.

The following list includes some examples of how C code is compiled into THUMB code.

Multiplying by a power of 2

u32 var1 = 7;
var1 = var1*8;

MOV R0, #7
LSL R0, R0, #3

When a variable is multiplied by a constant that is a power of 2, the instruction MUL is not
used. Instead it is used the LSL instruction, being value the exponent of 2 of the number
that is multiplying the variable.

Dividing by a power of 2

u32 var1 = 19;
var1 = var1/16;

MOV R0, #19
LSR R0, R0, #4

When a variable is divided by a constant that is a power of 2, the instruction LSR is used,
being value the exponent of 2 of the number that is dividing the variable.

Dividing by an integer

u32 var1 = 46;
var1 = var1/6;

MOV R0, #46
MOV R1, #6
BLX divisionSubroutine

The NDS processor cannot make divisions in one instruction. That is why a subroutine needs
to be called every time a division is performed, with R0 and R1 as arguments. A BLX is used
because the division operand is a library function.

Function output

u32 var1 = function() + 1; BL function
ADD R0, #1

When a function is called and it returns an output, it is always stored in R0, with
independence of its type (in some cases, a pointer to the variable is returned, because the
output must fit in the 32-bit register).

#1. Basic ASM concepts - Mikelan98

Passing arguments to a function (1 to 4 arguments)

function(2, 6, BULBASAUR, 0); MOV R0, #2
MOV R1, #6
MOV R2, #1
MOV R3, #0
BL function

Arguments 1 to 4 are always stored in registers R0 to R3, so the called subroutine will then
work with them.

Passing arguments to a function (more than 4 arguments)

function(2, 6, ARCEUS, 0, TRUE,
TRUE, 2, 0);

SUB SP, SP, #0x10
MOV R0, #1
STR R0, [SP]
STR R0, [SP, #4]
MOV R0, #2
STR R0, [SP, #8]
MOV R0, #0
STR R0, [SP, #0xC]
MOV R0, #2
MOV R1, #6
LDR R2, =0x1ED
MOV R3, #0
BL function
ADD SP, SP, #0x10

Arguments 1 to 4 are stored like we explained before, but further arguments are stored in
the stack. First, the stack array is expanded in so many elements as arguments beyond 4 are
passed to the function (in this case, the function takes 8 arguments, so 4 are passed by the
register pathway and 4 by the stack pathway), so SP value needs to decrease for allowing
these new 4 elements. Then, the stack-pathway arguments are stored in these new empty
stack elements. Finally, registers R0 to R3 are loaded with the first 4 arguments. The called
subroutine will later read the necessary arguments from the stack (with LDR RX, [SP, #X]).
After the subroutine call, SP value must return to the original one.

Immediate value load

u32 var1 = 0x200; MOV R0, #0x80
LSL R0, R0, #2

Instead of using LDR R0, =0x200 (it would spend 6 bytes: 2 bytes for the instruction and 4
bytes for the loaded value) a value under 256 is loaded and then multiplied by a power of 2.
This only works if the desired value has a divisor that is a power of 2 and dividing the value
by it results in a number lower than 256.

Consecutive function calling

u32 var1 = fnction1(fnction2(0)); MOV R0, #0
BL fnction2
BL fnction1

When the output of a function is the only argument of the following function, they are
compiled consecutively. This is because fnction2 returns the output in R0, and fnction1 uses
R0 as input (as explained before).

#1. Basic ASM concepts - Mikelan98

Subroutine return when no subroutine is called inside it

...
return;

...
BX LR

When a function does not call another function inside (in other words, the LR is not
modified in any part of the subroutine) the return to the invoking subroutine is made
jumping to the LR value with a BX instruction. In THUMB mode, the BL and BLX instructions
automatically add +1 to the LR value, so it also returns to the previous processor mode.
Remember that R0 must have the function’s output, if it has any, before the BX instruction.

Subroutine return when subroutines are called inside it

...
return;

PUSH {R4-R7, LR}
...
POP {R4-R7, PC}

As explained before, LR is stored in the stack and later loaded directly into the PC register so
the processor jumps to the invoking subroutine that had the BL or BLX. Usually registers R4
to R7 are also stored, or some of them, because they are used to store values in the
invoking subroutine that should not be lost after the subroutine call. Remember that R0
must have the function’s output, if it has any, before the POP instruction.

Field access inside a structure

typedef struct{
 u32 fld1;
 u16 fld2;
 u16 fld3;
}STRUCTURE

STRUCTURE var = function()
var.fld1 = var.fld2 + var.fld3;

BL function
LDRH R1, [R0, #4]
LDRH R2, [R0, #6]
ADD R1, R1, R2
STR R1, [R0, #0]

Structs will be covered in further documents. As we can see, function returns not the struct
but the pointer to it (because a register cannot store a whole struct). Every field in the
struct has a specific size, and accessing them in the RAM memory is done with LDR and STR
instructions, knowing the relative pointer inside the struct.

If

if (var == 5) {
 function1();
} else {
 function2();
}
var++;

CMP R0, #5
BNE Else
BL function1
B Continue
Else:
BL function2
Continue:
ADD R0, #1

The If statements will be covered in further documents. They are compiled into CMP and
branch instructions. Note that the assembly code always checks for the opposite condition.

#1. Basic ASM concepts - Mikelan98

For

u32 var = 0;
for (int i = 0; i < 4; i++) {
 var += i;
}
return var;

MOV R0, #0
MOV R1, #0
Loop:
ADD R0, R0, R1
ADD R1, #1
CMP R1, #4
BLT Loop
BX LR

For loops will be covered in further documents. A register is always used as counter
variable, and a branch with condition is at the end of the loop.

What does IDA Pro?

We can split the disassembly tools in two types: the ones that interpret the code files

(CrystalTile2, for example) and the ones that interpret the RAM memory. The last ones need

the game to be running, but allow powerful methods for disassembling (breakpoints, tracing or

checking the register values at any moment). These tools allow viewing the assembly code of

the code files only when they are loaded in the RAM memory (so overlay files will only appear

when they are needed).

IDA Pro allows to open code files without debugging (they must decompressed) but it works

much better inspecting the RAM memory while the game is running.

