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What is ASM? 

A program (games are programs, of course) can be roughly divided in two parts: code and 

resources. In a NDS ROM, code files are the arm9.bin, arm7.bin and the overlay files, while 

other files are resources. 

However, the program code (C in this case) does not show as Game Freak wrote it but 

compiled. Compilation results in a degeneracy of the code into processor instructions, where 

all the function names are lost, or variables and structs don’t exist anymore and are converted 

in registers and pointers. That is what we call ASM. 

However, most of the code can be identified easily by the other pieces of code they call. In this 

regard, these fragments of code are called functions in a source code and subroutines in ASM, 

but they are equivalent: they can receive data (arguments), process it and return an output. Of 

course, like functions, there are subroutines that may not have neither input nor output. 

Except when the function uses the inline keyword, every function call in a source will be 

translated as a BL, BX or BLX in ASM. That’s the most important thing for identifying code’s 

purpose or writing new ASM code, as long as we know what does the called subroutine. 

 

(Note that, in the image above, function1() is an inline function and it is not branched to by the 

code, but directly compiled inside the invoking function) 
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The main difficulty here is to find the subroutines original names, as they are lost at 

compilation. The only way to have them would be having the original source code, or 

supposing them by analogy with a similar source code. 

What are the code files? 

The original source code ends compiled in 16-bit instructions (for these parts of the program 

that are compiled in THUMB mode) and 32-bit instructions (for ARM mode). This means 2 

bytes and 4 bytes, respectively, for each instruction to be processed. Each different instruction 

will have a different 16-bit or 32-bit value (for example, NOP instruction is always C0 46 in 

THUMB mode, little endian). The code files in the ROM (arm9.bin and overlays are the most 

important ones) are in fact a bunch of 16-bit and 32-bit instructions, forming large byte 

sequences for each function/subroutine. 

These byte sequences that form subroutines can be modified, but never expanded beyond its 

original size. That is because every subroutine coded in the code files interacts with other 

subroutines with both relative jumps/branches and absolute addresses. Editing every 

subroutine in the code files for fixing every branch is unapproachable, so the only way to write 

new subroutines is to find free space in the original code files, or finding a method for loading 

our data in a free RAM address. 

In the code files we can also find predefined arrays that subroutines can use. These predefined 

arrays are also known as tables in the ROM hacking scene (for example, the type effectiveness 

table, the overworld table or the map headers). 

The RAM memory 

When the program (the game) starts, the very first thing that happens is the dump of the 

arm9.bin contents (in any case decompressed, even if the file is normally compressed in the 

ROM) in address 0x02000000 of the RAM memory. The processor can’t read nor store data in 

other place than the RAM memory, that’s why the code file contents need to be dumped in 

the RAM, so the processor can read and execute their instructions. It’s also the reason of the 

code instructions to refer other subroutines of the program by its position in the RAM memory 

and not by its position in the code files. 

However, every compiled instruction of the program would take a lot of RAM memory if they 

were loaded at the same time. That’s why overlayed code files exist. The overlays are different 

files with different purposes in the program, but they are not always loaded in the RAM, but 

only when they are needed. In our case, the most significant cases are the overworld overlay 

set (some overlays that manage code that is only expected to run in the overworld) and the 

battle overlay set (overlays only expected to appear when the game is in a battle). That avoids 

a huge waste of memory, so more resources (images, data, 3D models) can be stored in the 

RAM. 

Registers 

The processor registers are the “variables” that can be operated in ASM, due to the inexistence 

of real variables in assembly. In both GBA and NDS they always have a 32-bit size (4 bytes). In 

Thumb mode (the instruction set that we are going to use in 99.999% of the cases) we only 

have 8 common registers (from R0 to R7) and 3 special registers. Instructions always refer to a 

specific operation with determined register/s. The common registers are used for common 

arithmetic/logical operations or RAM memory access. However, special registers have specific 

roles and should not be used for other purposes. These are: 



#1. Basic ASM concepts - Mikelan98 

 

SP – Stack pointer: This register stores the current pointer of the stack in the RAM memory. 

We will cover the stack later, but we can define it as the memory region where unused register 

values are stored until they are loaded into a register and then operated. It is very important, 

because we couldn’t do everything we want with only 8 registers for the whole program. 

LR – Link register: This register is important when calling a subroutine (using BL or BLX), 

because it stores the pointer to the location where the program was before accessing that 

subroutine. In other words, it stores the pointer to where the program must return after 

calling a function. At the end of a subroutine, this register’s value somehow must end in PC 

register. 

PC – Program counter: This register stores the RAM address of the next instruction that will be 

executed by the processor. 

Instructions 

The most important instructions of THUMB mode are the following ones. 

INSTR PURPOSE USAGE 

NOP Nothing (commonly used as a placeholder) NOP 

LSL Logical shift of RB, value/RC bits to the left. Store result in RA 
This is equivalent of multiplying RB by 2value or 2RC 

LSL RA, RB, value 
LSL RA, RB, RC 

LSR Logical shift of RB, value/RC bits to the right. Store result in RA 
This is equivalent of dividing RB by 2value or 2RC 

LSR RA, RB, value 
LSR RA, RB, RC 

ADD Sum RB and RC, store result in RA 
Sum value to RA 

ADD RA, RB, RC 
ADD RA, value 

SUB Subtract RC to RB, store result in RA 
Subtract value to RA 

ADD RA, RB, RC 
ADD RA, value 

MUL Multiply RB to RA, store result in RA MUL RA, RB 

AND Makes a bitwise and between RB and RC, store result in RA AND RA, RB, RC 

ORR Makes a bitwise or between RB and RC, store result in RA ORR RA, RB, RC 

EOR Makes a bitwise xor between RB and RC, store result in RA EOR RA, RB, RC 

MOV Loads value in RA 
Loads RB in RA 

MOV RA, value 
MOV RA, RB 

LDR Loads 4 bytes from memory address [RB + value] in RA LDR RA, [RB, value] 

LDRH Loads 2 bytes from memory address [RB + value] in RA LDRH RA, [RB, value] 

LDRB Loads 1 byte from memory address [RB + value] in RA LDRB RA, [RB, value] 

STR Stores 4 bytes of RA in memory address [RB + value] STR RA, [RB, value] 

STRH Stores 2 bytes of RA in memory address [RB + value] STRH RA, [RB, value] 

STRB Stores 1 byte of RA in memory address [RB + value] STRB RA, [RB, value] 

CMP Compare RA and RB, updates internal CPU flags CMP RA, RB 

B Execution jumps to address B address 

BEQ Execution jumps to address if RA = RB after a CMP BEQ address 

BNE Execution jumps to address if RA ≠ RB after a CMP BNE address 

BCS Execution jumps to address if RA >= RB after a CMP BCS address 

BCC Execution jumps to address if RA < RB after a CMP BCC address 

BL Saves the current PC value in LR, then jumps to address BL address 

BX Execution jumps to RA BX RA 

BLX Same as BL, but changes the instruction set (from ARM to 
THUMB mode or from THUMB to ARM mode) 

BLX address 
BLX RA 

PUSH Saves specified registers in the stack PUSH {RA-RB} 

PUSH Loads specified registers from the stack POP {RA-RB} 
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Logical and arithmetical instructions 

These instructions operate with the current values in registers. Each instruction has a specific 

purpose and may come from different C source operations. As the table shows, the first 

register (RA) is the only one that gets updated, while the others remain with the same value. 

It is important to explain how the LSR and LSL instructions work. Both are logical shifts, so the 

bits of a register move to right or left as many places as specified in the instruction. This means 

that, for each position that the bits are moved to, the register’s value gets multiplied or 

divided by 2. 

 

The bits that overflow the 32-bit register size at the left (in a LSL) or at the right (in a LSR) are 

lost, so the information that these bits had cannot be recovered and are always filled with 

zeros. 

Loading and writing instructions 

These instructions can access to the RAM memory, load information from there and store it in 

registers so the processor can operate them. They can also write registers’ values to the RAM 

memory (after processing them, for example). 

MOV is the assignation instruction, as it can directly load a value from 0 to 255 in a register. It 

can also copy a register’s value to another register. However, MOV cannot be used for loading 

a value higher than 256 in a register. 

LDR and STR instructions can work with words (32-bit values), halfwords (16-bit values) or 

bytes (8-bit values), these last two with the LDRH/STRH and LDRB/STRB instructions. They 

need a RAM address, stored in the register they use, to work. Along with that register, they 

can also have a specified value that increase that address. 

LDR has also a special purpose in most of subroutines. Remember that MOV could not load 

values higher than 255 in a register? LDR allows using PC as register, so it can load 32-bit 

values (4 bytes) near the current subroutine (the distance between the LDR instruction and the 

4 loaded bytes are defined by the “increasing” value we mentioned). These data bytes are 

usually stored at the end of a subroutine and before the next subroutine starts. In this case, 

the LDR instruction is common to be represented as LDR RA, =value. 

Branching instructions 

They allow the code to branch to different parts of the subroutine, or even call other 

subroutines. 

There are different conditions for B instruction (as they can be seen in the table), all of them 

perform short jumps and usually inside the same subroutine. They need a CMP instruction for 
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checking the condition between two register values. These instructions come from If, For and 

While structures in the C source. 

We also have BL and BLX instruction, probably the most important ones. They perform big 

jumps (from the arm9 region to an overlay region, for example). They are also an exception of 

the THUMB mode, as they are the only instructions that are 32-bit long (unlike the other ones 

that are 16-bit long). As we explained in the introduction of this document, every BL and BLX 

instruction comes from a function call in the C source. In fact, we must keep seeing it like 

subroutine call instructions. 

BLX also allows to switch between ARM and THUMB modes. It always changes the processor to 

THUMB mode if it was in ARM mode, or to ARM mode if it was in THUMB mode. Usually, 

everything in the program is compiled/encoded in THUMB mode except library subroutines 

(fixed- and floating-point functions, divmod functions, vector operation functions…) because 

they need a more powerful instruction set, so we will commonly see a BLX when a library 

function is called in the program. 

BX (and BLX when uses a register instead of an offset) can also perform a instruction set switch 

depending on the last bit (the less significant one) of the specified register. When it is zero, it 

changes to (or keeps in) ARM mode, and when it is 1 it changes to (or keeps in) THUMB mode. 

In other words, when a BX RA or BLX RA is executed, it will change to ARM mode if RA = offset, 

and it will change to THUMB mode if RA = offset + 1. 

Stack instructions 

We will first explain what the stack is. The stack can be defined as a 32-bit integers dynamic 

array that starts around RAM memory offset 0x027E0000 and is dynamically expanded to 

consecutive lower offsets. Note that this array elements have the same size as the registers: 

that is because this array is used for storing register values (when they are not going to be 

used in the current subroutine, or when there’s not enough usable registers and some values 

have to be stored somewhere). The current pointer to the last element of the stack is stored in 

the SP register. 

PUSH instruction stores the specified register values in the stack, while POP instruction loads 

back the values to registers. Both instructions modify the SP register value, as they add and 

delete elements from the array. 
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Keeping the SP register updated allows PUSH and POP instructions to know where they must 

operate in the RAM memory. Obviously, the SP register value is always a multiple of 4, because 

the elements are 4 bytes length. 

A common usage of stack instructions happens when a BL instruction is executed: usually the 

first instruction of a called subroutine is a PUSH instruction that stores the LR (along with other 

registers). At the end of the subroutine, a POP is performed with the PC register (along with 

the other registers specified previously). This means that the LR value is stored in the stack, 

and later it ends in the PC register, so the program execution automatically jumps to the 

original LR value (that is, the instruction that was just after the BL). 

Compilation fingerprints 

There exist a lot of different compilation directives that convert the C source code to ASM 

code in quite different ways, with more or less optimization. In our case (in NDS games and in 

THUMB mode) we will find that a lot of C code structures have a specific ways to be converted 

in ARM instructions, allowing us to establish relationships between low-level programming 

language functions and assembly language subroutines. 

The following list includes some examples of how C code is compiled into THUMB code. 

Multiplying by a power of 2 

u32 var1 = 7; 
var1 = var1*8; 

MOV R0, #7 
LSL R0, R0, #3 

When a variable is multiplied by a constant that is a power of 2, the instruction MUL is not 
used. Instead it is used the LSL instruction, being value the exponent of 2 of the number 
that is multiplying the variable. 

Dividing by a power of 2 

u32 var1 = 19; 
var1 = var1/16; 

MOV R0, #19 
LSR R0, R0, #4 

When a variable is divided by a constant that is a power of 2, the instruction LSR is used, 
being value the exponent of 2 of the number that is dividing the variable. 

Dividing by an integer 

u32 var1 = 46; 
var1 = var1/6; 

MOV R0, #46 
MOV R1, #6 
BLX divisionSubroutine 

The NDS processor cannot make divisions in one instruction. That is why a subroutine needs 
to be called every time a division is performed, with R0 and R1 as arguments. A BLX is used 
because the division operand is a library function. 

Function output 

u32 var1 = function() + 1; BL function 
ADD R0, #1 

When a function is called and it returns an output, it is always stored in R0, with 
independence of its type (in some cases, a pointer to the variable is returned, because the 
output must fit in the 32-bit register). 
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Passing arguments to a function (1 to 4 arguments) 

function(2, 6, BULBASAUR, 0); MOV R0, #2 
MOV R1, #6 
MOV R2, #1 
MOV R3, #0 
BL function 

Arguments 1 to 4 are always stored in registers R0 to R3, so the called subroutine will then 
work with them. 

Passing arguments to a function (more than 4 arguments) 

function(2, 6, ARCEUS, 0, TRUE, 
TRUE, 2, 0); 

SUB SP, SP, #0x10 
MOV R0, #1 
STR R0, [SP] 
STR R0, [SP, #4] 
MOV R0, #2 
STR R0, [SP, #8] 
MOV R0, #0 
STR R0, [SP, #0xC] 
MOV R0, #2 
MOV R1, #6 
LDR R2, =0x1ED 
MOV R3, #0 
BL function 
ADD SP, SP, #0x10 

Arguments 1 to 4 are stored like we explained before, but further arguments are stored in 
the stack. First, the stack array is expanded in so many elements as arguments beyond 4 are 
passed to the function (in this case, the function takes 8 arguments, so 4 are passed by the 
register pathway and 4 by the stack pathway), so SP value needs to decrease for allowing 
these new 4 elements. Then, the stack-pathway arguments are stored in these new empty 
stack elements. Finally, registers R0 to R3 are loaded with the first 4 arguments. The called 
subroutine will later read the necessary arguments from the stack (with LDR RX, [SP, #X]). 
After the subroutine call, SP value must return to the original one. 

Immediate value load 

u32 var1 = 0x200; MOV R0, #0x80 
LSL R0, R0, #2 

Instead of using LDR R0, =0x200 (it would spend 6 bytes: 2 bytes for the instruction and 4 
bytes for the loaded value) a value under 256 is loaded and then multiplied by a power of 2. 
This only works if the desired value has a divisor that is a power of 2 and dividing the value 
by it results in a number lower than 256. 

Consecutive function calling 

u32 var1 = fnction1(fnction2(0)); MOV R0, #0 
BL fnction2 
BL fnction1 

When the output of a function is the only argument of the following function, they are 
compiled consecutively. This is because fnction2 returns the output in R0, and fnction1 uses 
R0 as input (as explained before). 
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Subroutine return when no subroutine is called inside it 

... 
return; 

... 
BX LR 

When a function does not call another function inside (in other words, the LR is not 
modified in any part of the subroutine) the return to the invoking subroutine is made 
jumping to the LR value with a BX instruction. In THUMB mode, the BL and BLX instructions 
automatically add +1 to the LR value, so it also returns to the previous processor mode. 
Remember that R0 must have the function’s output, if it has any, before the BX instruction. 

Subroutine return when subroutines are called inside it 

... 
return; 

PUSH {R4-R7, LR} 
... 
POP {R4-R7, PC} 

As explained before, LR is stored in the stack and later loaded directly into the PC register so 
the processor jumps to the invoking subroutine that had the BL or BLX. Usually registers R4 
to R7 are also stored, or some of them, because they are used to store values in the 
invoking subroutine that should not be lost after the subroutine call. Remember that R0 
must have the function’s output, if it has any, before the POP instruction. 

Field access inside a structure 

typedef struct{ 
   u32 fld1; 
   u16 fld2; 
   u16 fld3; 
}STRUCTURE 
 
STRUCTURE var = function() 
var.fld1 = var.fld2 + var.fld3; 

BL function 
LDRH R1, [R0, #4] 
LDRH R2, [R0, #6] 
ADD R1, R1, R2 
STR R1, [R0, #0] 

Structs will be covered in further documents. As we can see, function returns not the struct 
but the pointer to it (because a register cannot store a whole struct). Every field in the 
struct has a specific size, and accessing them in the RAM memory is done with LDR and STR 
instructions, knowing the relative pointer inside the struct. 

If 

if (var == 5) { 
   function1(); 
} else { 
   function2(); 
} 
var++; 

CMP R0, #5 
BNE Else 
BL function1 
B Continue 
Else: 
BL function2 
Continue: 
ADD R0, #1 

The If statements will be covered in further documents. They are compiled into CMP and 
branch instructions. Note that the assembly code always checks for the opposite condition. 
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For 

u32 var = 0; 
for (int i = 0; i < 4; i++) { 
   var += i; 
} 
return var; 

MOV R0, #0 
MOV R1, #0 
Loop: 
ADD R0, R0, R1 
ADD R1, #1 
CMP R1, #4 
BLT Loop 
BX LR 

For loops will be covered in further documents. A register is always used as counter 
variable, and a branch with condition is at the end of the loop. 

 

What does IDA Pro? 

We can split the disassembly tools in two types: the ones that interpret the code files 

(CrystalTile2, for example) and the ones that interpret the RAM memory. The last ones need 

the game to be running, but allow powerful methods for disassembling (breakpoints, tracing or 

checking the register values at any moment). These tools allow viewing the assembly code of 

the code files only when they are loaded in the RAM memory (so overlay files will only appear 

when they are needed). 

IDA Pro allows to open code files without debugging (they must decompressed) but it works 

much better inspecting the RAM memory while the game is running. 


